
 The Linux BootPrompt−HowTo

Table of Contents

The Linux BootPrompt−HowTo..1
by Paul Gortmaker. ...1
1.Introduction...1
2.Overview of Boot Prompt Arguments..1
3.General Non−Device Specific Boot Args...1
4.Boot Arguments to Control PCI Bus Behaviour (`pci=')..2
5.Boot Arguments for Video Frame Buffer Drivers..2
6.Boot Arguments for SCSI Peripherals..2
7.Hard Disks..2
8.CD−ROMs (Non−SCSI/ATAPI/IDE)..2
9.Serial and ISDN Drivers...3
10.Other Hardware Devices...3
11.Copying, Translations, Closing, etc..3
1.Introduction...3
1.1 Disclaimer and Copyright..4
1.2 Intended Audience and Applicability..4
1.3 Related Documentation..4
1.4 The Linux Newsgroups..5
1.5 New Versions of this Document..5
2.Overview of Boot Prompt Arguments..5
2.1 LILO (LInux LOader)..6
2.2 LoadLin..6
2.3 The ̀ `rdev'' utility...6
2.4 How the Kernel Sorts the Arguments..7
2.5 Setting Environment Variables..7
2.6 Passing Arguments to the ̀ init' program..7
3.General Non−Device Specific Boot Args...8
3.1 Root Filesystem options...8

The ̀ root=' Argument...8
The ̀ ro' Argument...9
The ̀ rw' Argument..9

3.2 Options Relating to RAM Disk Management..9
The ̀ ramdisk_start=' Argument..9
The ̀ load_ramdisk=' Argument..10
The ̀ prompt_ramdisk=' Argument...10
The ̀ ramdisk_size=' Argument...10
The ̀ ramdisk=' Argument (obsolete)..10
The ̀ noinitrd' (initial RAM disk) Argument..11

3.3 Boot Arguments Related to Memory Handling...11
The ̀ mem=' Argument..11
The ̀ swap=' Argument...12
The ̀ buff=' Argument...12

3.4 Boot Arguments for NFS Root Filesystem..12
The ̀ nfsroot=' Argument..13
The ̀ nfsaddrs=' Argument..13

3.5 Other Misc. Kernel Boot Arguments...14
The ̀ debug' Argument..14

 The Linux BootPrompt−HowTo

i

Table of Contents

The ̀ init=' Argument..14
The ̀ kbd−reset' Argument..15
The ̀ maxcpus=' Argument...15
The ̀ mca−pentium' Argument..15
The ̀ md=' Argument...15
The ̀ no387' Argument..15
The ̀ no−hlt' Argument...16
The ̀ no−scroll' Argument...16
The ̀ noapic' Argument...16
The ̀ nosmp' Argument...16
The ̀ panic=' Argument...16
The ̀ pci=' Argument...17
The ̀ pirq=' Argument...17
The ̀ profile=' Argument...17
The ̀ reboot=' Argument...17
The ̀ reserve=' Argument..17
The ̀ vga=' Argument..18

4.Boot Arguments to Control PCI Bus Behaviour (`pci=')..18
4.1 The ̀ pci=bios' and ̀pci=nobios' Arguments..19
4.2 The ̀ pci=conf1' and ̀pci=conf2' Arguments...19
4.3 The ̀ pci=io=' Argument..19
4.4 The ̀ pci=nopeer' Argument...19
4.5 The ̀ pci=nosort' Argument..19
4.6 The ̀ pci=off' Argument...19
4.7 The ̀ pci=reverse' Argument..20
5.Boot Arguments for Video Frame Buffer Drivers..20
5.1 The ̀ video=map:...' Argument...20
5.2 The ̀ video=scrollback:...' Argument...21
5.3 The ̀ video=vc:...' Argument..21
6.Boot Arguments for SCSI Peripherals..21
6.1 Arguments for Mid−level Drivers...21

Maximum Probed LUNs (`max_scsi_luns=')...21
SCSI Logging (`scsi_logging=')...22
Parameters for the SCSI Tape Driver (`st=')...22

6.2 Arguments for SCSI Host Adapters...22
Adaptec aha151x, aha152x, aic6260, aic6360, SB16−SCSI (`aha152x=')...............................23
Adaptec aha154x (`aha1542=')...23
Adaptec aha274x, aha284x, aic7xxx (`aic7xxx=')..24
AdvanSys SCSI Host Adaptors (`advansys=')..24
Always IN2000 Host Adaptor (`in2000=')...24
AMD AM53C974 based hardware (`AM53C974=')..25
BusLogic SCSI Hosts with v1.2 kernels (`buslogic=')...25
BusLogic SCSI Hosts with v2.x kernels (`BusLogic=')...25
EATA SCSI Cards (`eata=')..25
Future Domain TMC−8xx, TMC−950 (`tmc8xx=')...26
Future Domain TMC−16xx, TMC−3260, AHA−2920 (`fdomain=').......................................26
IOMEGA Parallel Port / ZIP drive (`ppa=')...26

 The Linux BootPrompt−HowTo

ii

Table of Contents

NCR5380 based controllers (`ncr5380=')...26
NCR53c400 based controllers (`ncr53c400=')...27
NCR53c406a based controllers (`ncr53c406a=')..27
Pro Audio Spectrum (`pas16=')..27
Seagate ST−0x (`st0x=')...27
Trantor T128 (`t128=')..28
Ultrastor SCSI cards (`u14−34f=')..28
Western Digital WD7000 cards (`wd7000=')...28

6.3 SCSI Host Adapters that don't Accept Boot Args...28
7.Hard Disks..29
7.1 IDE Disk/CD−ROM Driver Parameters..29
7.2 Standard ST−506 Disk Driver Options (`hd=')..30
7.3 XT Disk Driver Options (`xd=')...30
8.CD−ROMs (Non−SCSI/ATAPI/IDE)..31
8.1 The Aztech Interface (`aztcd=')...31
8.2 The CDU−31A and CDU−33A Sony Interface (`cdu31a=')...31
8.3 The CDU−535 Sony Interface (`sonycd535=')..31
8.4 The GoldStar Interface (`gscd=')...32
8.5 The ISP16 Interface (`isp16=')...32
8.6 The Mitsumi Standard Interface (`mcd=')...32
8.7 The Mitsumi XA/MultiSession Interface (`mcdx=')..32
8.8 The Optics Storage Interface (`optcd=')...32
8.9 The Phillips CM206 Interface (`cm206=')...33
8.10 The Sanyo Interface (`sjcd=')...33
8.11 The SoundBlaster Pro Interface (`sbpcd=')..33
9.Serial and ISDN Drivers...33
9.1 The ICN ISDN driver (`icn=')..33
9.2 The PCBIT ISDN driver (`pcbit=')..34
9.3 The Teles ISDN driver (`teles=')...34
9.4 The DigiBoard Driver (`digi=')..34
9.5 The RISCom/8 Multiport Serial Driver (`riscom8=')..35
9.6 The Baycom Serial/Parallel Radio Modem (`baycom=')...35
10.Other Hardware Devices...35
10.1 Ethernet Devices (`ether=')..35
10.2 The Floppy Disk Driver (`floppy=')...36
10.3 The Sound Driver (`sound=')...36
10.4 The Bus Mouse Driver (`bmouse=')..37
10.5 The MS Bus Mouse Driver (`msmouse=')...37
10.6 The Printer Driver (`lp=')...37
11.Copying, Translations, Closing, etc..38
11.1 Copyright and Disclaimer..38
11.2 Closing...38

 The Linux BootPrompt−HowTo

iii

The Linux BootPrompt−HowTo

by Paul Gortmaker.

v1.2, May 1999

This is the BootPrompt−Howto, which is a compilation of all the possible boot time arguments that can be
passed to the Linux kernel at boot time. This includes all kernel and device parameters. A discussion of how
the kernel sorts boot time arguments, along with an overview of some of the popular software used to boot
Linux kernels is also included.

1.Introduction

• 1.1 Disclaimer and Copyright
• 1.2 Intended Audience and Applicability
• 1.3 Related Documentation
• 1.4 The Linux Newsgroups
• 1.5 New Versions of this Document

2.Overview of Boot Prompt Arguments

• 2.1 LILO (LInux LOader)
• 2.2 LoadLin
• 2.3 The ``rdev'' utility
• 2.4 How the Kernel Sorts the Arguments
• 2.5 Setting Environment Variables.
• 2.6 Passing Arguments to the `init' program

3.General Non−Device Specific Boot Args

• 3.1 Root Filesystem options
• 3.2 Options Relating to RAM Disk Management
• 3.3 Boot Arguments Related to Memory Handling
• 3.4 Boot Arguments for NFS Root Filesystem
• 3.5 Other Misc. Kernel Boot Arguments

The Linux BootPrompt−HowTo 1

4.Boot Arguments to Control PCI Bus Behaviour (`pci=')

• 4.1 The `pci=bios' and `pci=nobios' Arguments
• 4.2 The `pci=conf1' and `pci=conf2' Arguments
• 4.3 The `pci=io=' Argument
• 4.4 The `pci=nopeer' Argument
• 4.5 The `pci=nosort' Argument
• 4.6 The `pci=off' Argument
• 4.7 The `pci=reverse' Argument

5.Boot Arguments for Video Frame Buffer Drivers

• 5.1 The `video=map:...' Argument
• 5.2 The `video=scrollback:...' Argument
• 5.3 The `video=vc:...' Argument

6.Boot Arguments for SCSI Peripherals.

• 6.1 Arguments for Mid−level Drivers
• 6.2 Arguments for SCSI Host Adapters
• 6.3 SCSI Host Adapters that don't Accept Boot Args

7.Hard Disks

• 7.1 IDE Disk/CD−ROM Driver Parameters
• 7.2 Standard ST−506 Disk Driver Options (`hd=')
• 7.3 XT Disk Driver Options (`xd=')

8.CD−ROMs (Non−SCSI/ATAPI/IDE)

• 8.1 The Aztech Interface (`aztcd=')
• 8.2 The CDU−31A and CDU−33A Sony Interface (`cdu31a=')
• 8.3 The CDU−535 Sony Interface (`sonycd535=')
• 8.4 The GoldStar Interface (`gscd=')
• 8.5 The ISP16 Interface (`isp16=')
• 8.6 The Mitsumi Standard Interface (`mcd=')
• 8.7 The Mitsumi XA/MultiSession Interface (`mcdx=')
• 8.8 The Optics Storage Interface (`optcd=')
• 8.9 The Phillips CM206 Interface (`cm206=')
• 8.10 The Sanyo Interface (`sjcd=')
• 8.11 The SoundBlaster Pro Interface (`sbpcd=')

 The Linux BootPrompt−HowTo

4.Boot Arguments to Control PCI Bus Behaviour (`pci=') 2

9.Serial and ISDN Drivers

• 9.1 The ICN ISDN driver (`icn=')
• 9.2 The PCBIT ISDN driver (`pcbit=')
• 9.3 The Teles ISDN driver (`teles=')
• 9.4 The DigiBoard Driver (`digi=')
• 9.5 The RISCom/8 Multiport Serial Driver (`riscom8=')
• 9.6 The Baycom Serial/Parallel Radio Modem (`baycom=')

10.Other Hardware Devices

• 10.1 Ethernet Devices (`ether=')
• 10.2 The Floppy Disk Driver (`floppy=')
• 10.3 The Sound Driver (`sound=')
• 10.4 The Bus Mouse Driver (`bmouse=')
• 10.5 The MS Bus Mouse Driver (`msmouse=')
• 10.6 The Printer Driver (`lp=')

11.Copying, Translations, Closing, etc.

• 11.1 Copyright and Disclaimer
• 11.2 Closing

1.Introduction

The kernel has a limited capability to accept information at boot in the form of a `command line', similar to
an argument list you would give to a program. In general this is used to supply the kernel with information
about hardware parameters that the kernel would not be able to determine on its own, or to avoid/override the
values that the kernel would otherwise detect.

However, if you just copy a kernel image directly to a floppy, (e.g. cp zImage /dev/fd0) then you are
not given a chance to specify any arguments to that kernel. So most Linux users will use software like
LILO or loadlin that takes care of handing these arguments to the kernel, and then booting it.

This present revision covers kernels up to and including v2.2.9. Some features that are unique to
development/testing kernels up to v2.3.2 are also documented.

The BootPrompt−Howto is by:

Paul Gortmaker, p_gortmaker@yahoo.com

 The Linux BootPrompt−HowTo

9.Serial and ISDN Drivers 3

1.1 Disclaimer and Copyright

This document is Copyright (c) 1995−1999 by Paul Gortmaker. Please see the Disclaimer and Copying
information at the end of this document (copyright) for information about redistribution of this document and
the usual `we are not responsible for what you manage to break...' type legal stuff.

1.2 Intended Audience and Applicability

Most Linux users should never have to even look at this document. Linux does an exceptionally good job at
detecting most hardware and picking reasonable default settings for most parameters. The information in this
document is aimed at users who might want to change some of the default settings to optimize the kernel to
their particular machine, or to a user who has `rolled their own' kernel to support a not so common piece of
hardware for which automatic detection is currently not available.

IMPORTANT NOTE: Driver related boot prompt arguments only apply to hardware drivers that are compiled
directly into the kernel. They have no effect on drivers that are loaded as modules. Most Linux distributions
come with a basic `bare−bones' kernel, and the drivers are small modules that are loaded after the kernel has
initialized. If you are unsure if you are using modules then look at man depmod and man
modprobe along with the contents of your /etc/conf.modules.

1.3 Related Documentation

The most up−to−date documentation will always be the kernel source itself. Hold on! Don't get scared. You
don't need to know any programming to read the comments in the source files. For example, if you were
looking for what arguments could be passed to the AHA1542 SCSI driver, then you would go to the
linux/drivers/scsi directory, and look at the file aha1542.c −− and within the first 100 lines, you
would find a plain english description of the boot time arguments that the 1542 driver accepts.

The linux directory is usually found in /usr/src/ for most distributions. All references in this document
to files that come with the kernel will have their pathname abbreviated to start with linux − you will have
to append the /usr/src/ or whatever is appropriate for your system. (If you can't find the file in question,
then make use of the find and locate commands.)

The next best thing will be any documentation files that are distributed with the kernel itself. There are now
quite a few of these, and most of them can be found in the directory linux/Documentation and
subdirectories from there. Sometimes there will be README.foo files that can be found in the related driver
directory (e.g. linux/drivers/???/, where examples of ??? could be scsi, char, or net).

If you have figured out what boot−args you intend to use, and now want to know how to get that information
to the kernel, then look at the documentation that comes with the software that you use to boot the kernel (e.g.
LILO or loadlin). A brief overview is given below, but it is no substitute for the documentation that comes
with the booting software.

 The Linux BootPrompt−HowTo

1.1 Disclaimer and Copyright 4

1.4 The Linux Newsgroups

If you have questions about passing boot arguments to the kernel, please check this document first. If this and
the related documentation mentioned above does not answer your question(s) then you can try the Linux
newsgroups. General questions on how to configure your system should be directed to the
comp.os.linux.setup newsgroup. We ask that you please respect this general guideline for content, and don't
cross−post your request to other groups.

Of course you should try checking the group before blindly posting your question, as it may even be a
Frequently Asked Question (a FAQ). A quick browse of the Linux FAQ before posting is a good idea. You
should be able to find the FAQ somewhere close to where you found this document. If it is not a FAQ then
use newsgroup archives, such as those at http://www.dejanews.com to quickly search years worth of
postings for your topic. Chances are someone else has already asked (and another person answered!) the
question that you now have.

1.5 New Versions of this Document

New versions of this document can be retrieved via anonymous FTP from most Linux FTP sites in the
directory /pub/Linux/docs/HOWTO/. Updates will be made as new information and/or drivers becomes
available. If this copy that you are presently reading is more than six months old, then you should probably
check to see if a newer copy exists. I would recommend viewing this via a WWW browser or in the
Postscript/dvi format. Both of these contain cross−references that are lost in a simple plain text version.

If you want to get the official copy, here is URL.

BootPrompt−HOWTO

2.Overview of Boot Prompt Arguments

This section gives some examples of software that can be used to pass kernel boot−time arguments to the
kernel itself. It also gives you an idea of how the arguments are processed, what limitations there are on the
boot args, and how they filter down to each appropriate device that they are intended for.

It is important to note that spaces should not be used in a boot argument, but only between separate
arguments. A list of values that are for a single argument are to be separated with a comma between the
values, and again without any spaces. See the following examples below.

 ether=9,0x300,0xd0000,0xd4000,eth0 root=/dev/hda1 *RIGHT*
 ether = 9, 0x300, 0xd0000, 0xd4000, eth0 root = /dev/hda1 *WRONG*

Once the Linux kernel is up and running, one can view the command line arguments that were in place at
boot by simply typing cat /proc/cmdline at a shell prompt.

 The Linux BootPrompt−HowTo

1.4 The Linux Newsgroups 5

http://metalab.unc.edu/mdw/HOWTO/BootPrompt-HOWTO.html

2.1 LILO (LInux LOader)

The LILO program (LInux LOader) written by Werner Almesberger is the most commonly used. It has the
ability to boot various kernels, and stores the configuration information in a plain text file. Most distributions
ship with LILO as the default boot−loader. LILO can boot DOS, OS/2, Linux, FreeBSD, etc. without any
difficulties, and is quite flexible.

A typical configuration will have LILO stop and print LILO: shortly after you turn on your computer. It will
then wait for a few seconds for any optional input from the user, and failing that it will then boot the default
system. Typical system labels that people use in the LILO configuration files are linux and backup and
msdos. If you want to type in a boot argument, you type it in here, after typing in the system label that you
want LILO to boot from, as shown in the example below.

 LILO: linux root=/dev/hda1

LILO comes with excellent documentation, and for the purposes of boot args discussed here, the LILO
append= command is of significant importance when one wants to add a boot time argument as a
permanent addition to the LILO config file. You simply add something like append = "foo=bar" to the
/etc/lilo.conf file. It can either be added at the top of the config file, making it apply to all sections, or
to a single system section by adding it inside an image= section. Please see the LILO documentation for a
more complete description.

2.2 LoadLin

The other commonly used Linux loader is `LoadLin' which is a DOS program that has the capability to
launch a Linux kernel from the DOS prompt (with boot−args) assuming that certain resources are available.
This is good for people that use DOS and want to launch into Linux from DOS.

It is also very useful if you have certain hardware which relies on the supplied DOS driver to put the
hardware into a known state. A common example is `SoundBlaster Compatible' sound cards that require the
DOS driver to set a few proprietary registers to put the card into a SB compatible mode. Booting DOS with
the supplied driver, and then loading Linux from the DOS prompt with LOADLIN.EXE avoids the reset of
the card that happens if one rebooted instead. Thus the card is left in a SB compatible mode and hence is
useable under Linux.

There are also other programs that can be used to boot Linux. For a complete list, please look at the programs
available on your local Linux ftp mirror, under system/Linux−boot/.

2.3 The ``rdev'' utility

There are a few of the kernel boot parameters that have their default values stored in various bytes in the
kernel image itself. There is a utility called rdev that is installed on most systems that knows where these
values are, and how to change them. It can also change things that have no kernel boot argument equivalent,
such as the default video mode used.

 The Linux BootPrompt−HowTo

2.1 LILO (LInux LOader) 6

The rdev utility is usually also aliased to swapdev, ramsize, vidmode and rootflags. These are the five things
that rdev can change, those being the root device, the swap device, the RAM disk parameters, the default
video mode, and the readonly/readwrite setting of root device.

More information on rdev can be found by typing rdev −h or by reading the supplied man page (man
rdev).

2.4 How the Kernel Sorts the Arguments

Most of the boot args take the form of:

 name[=value_1][,value_2]...[,value_11]

where `name' is a unique keyword that is used to identify what part of the kernel the associated values (if any)
are to be given to. Multiple boot args are just a space separated list of the above format. Note the limit of 11
is real, as the present code only handles 11 comma separated parameters per keyword. (However, you can
re−use the same keyword with up to an additional 11 parameters in unusually complicated situations,
assuming the setup function supports it.) Also note that the kernel splits the list into a maximum of ten integer
arguments, and a following string, so you can't really supply 11 integers unless you convert the 11th arg from
a string to an int in the driver itself.

Most of the sorting goes on in linux/init/main.c. First, the kernel checks to see if the argument is any
of the special arguments `root=', `ro', `rw', or `debug'. The meaning of these special arguments is described
further on in the document.

Then it walks a list of setup functions (contained in the bootsetups array) to see if the specified argument
string (such as `foo') has been associated with a setup function (foo_setup()) for a particular device or
part of the kernel. If you passed the kernel the line foo=3,4,5,6,bar then the kernel would search the
bootsetups array to see if `foo' was registered. If it was, then it would call the setup function associated
with `foo' (foo_setup()) and hand it the integer arguments 3, 4, 5 and 6 as given on the kernel command
line, and also hand it the string argument bar.

2.5 Setting Environment Variables.

Anything of the form `foo=bar' that is not accepted as a setup function as described above is then interpreted
as an environment variable to be set. An example would be to use TERM=vt100 or
BOOT_IMAGE=vmlinuz.bak as a boot argument. These environment variables are typically tested for in
the initialization scripts to enable or disable a wide range of things.

2.6 Passing Arguments to the `init' program

Any remaining arguments that were not picked up by the kernel and were not interpreted as environment
variables are then passed onto process one, which is usually the init program. The most common argument
that is passed to the init process is the word single which instructs init to boot the computer in single

 The Linux BootPrompt−HowTo

2.4 How the Kernel Sorts the Arguments 7

user mode, and not launch all the usual daemons. Check the manual page for the version of init installed on
your system to see what arguments it accepts.

3.General Non−Device Specific Boot Args

These are the boot arguments that are not related to any specific device or peripheral. They are instead related
to certain internal kernel parameters, such as memory handling, ramdisk handling, root file system handling
and others.

3.1 Root Filesystem options

The following options all pertain to how the kernel selects and handles the root filesystem.

The `root=' Argument

This argument tells the kernel what device is to be used as the root filesystem while booting. The default of
this setting is the value of the root device of the system that the kernel was built on. For example, if the kernel
in question was built on a system that used `/dev/hda1' as the root partition, then the default root device
would be `/dev/hda1'. To override this default value, and select the second floppy drive as the root device,
one would use `root=/dev/fd1'.

Valid root devices are any of the following devices:

(1) /dev/hdaN to /dev/hddN, which is partition N on ST−506 compatible disk `a to d'.

(2) /dev/sdaN to /dev/sdeN, which is partition N on SCSI compatible disk `a to e'.

(3) /dev/xdaN to /dev/xdbN, which is partition N on XT compatible disk `a to b'.

(4) /dev/fdN, which is floppy disk drive number N. Having N=0 would be the DOS `A:' drive, and N=1
would be `B:'.

(5) /dev/nfs, which is not really a device, but rather a flag to tell the kernel to get the root fs via the network.

The more awkward and less portable numeric specification of the above possible disk devices in major/minor
format is also accepted. (e.g. /dev/sda3 is major 8, minor 3, so you could use root=0x803 as an
alternative.)

This is one of the few kernel boot arguments that has its default stored in the kernel image, and which can
thus be altered with the rdev utility.

 The Linux BootPrompt−HowTo

3.General Non−Device Specific Boot Args 8

The `ro' Argument

When the kernel boots, it needs a root filesystem to read basic things off of. This is the root filesystem that is
mounted at boot. However, if the root filesystem is mounted with write access, you can not reliably check the
filesystem integrity with half−written files in progress. The `ro' option tells the kernel to mount the root
filesystem as `readonly' so that any filesystem consistency check programs (fsck) can safely assume that there
are no half−written files in progress while performing the check. No programs or processes can write to files
on the filesystem in question until it is `remounted' as read/write capable.

This is one of the few kernel boot arguments that has its default stored in the kernel image, and which can
thus be altered with the rdev utility.

The `rw' Argument

This is the exact opposite of the above, in that it tells the kernel to mount the root filesystem as read/write.
The default is to mount the root filesystem as read/write anyway. Do not run any `fsck' type programs on a
filesystem that is mounted read/write.

The same value stored in the image file mentioned above is also used for this parameter, accessible via rdev.

3.2 Options Relating to RAM Disk Management

The following options all relate to how the kernel handles the RAM disk device, which is usually used for
bootstrapping machines during the install phase, or for machines with modular drivers that need to be
installed to access the root filesystem.

The `ramdisk_start=' Argument

To allow a kernel image to reside on a floppy disk along with a compressed ramdisk image, the
`ramdisk_start=<offset>' command was added. The kernel can't be included into the compressed ramdisk
filesystem image, because it needs to be stored starting at block zero so that the BIOS can load the bootsector
and then the kernel can bootstrap itself to get going.

Note: If you are using an uncompressed ramdisk image, then the kernel can be a part of the filesystem image
that is being loaded into the ramdisk, and the floppy can be booted with LILO, or the two can be separate as
is done for the compressed images.

If you are using a two−disk boot/root setup (kernel on disk 1, ramdisk image on disk 2) then the ramdisk
would start at block zero, and an offset of zero would be used. Since this is the default value, you would not
need to actually use the command at all.

 The Linux BootPrompt−HowTo

The `ro' Argument 9

The `load_ramdisk=' Argument

This parameter tells the kernel whether it is to try to load a ramdisk image or not. Specifying
`load_ramdisk=1' will tell the kernel to load a floppy into the ramdisk. The default value is zero, meaning that
the kernel should not try to load a ramdisk.

Please see the file linux/Documentation/ramdisk.txt for a complete description of the new boot
time arguments, and how to use them. A description of how this parameter can be set and stored in the kernel
image via `rdev' is also described.

The `prompt_ramdisk=' Argument

This parameter tells the kernel whether or not to give you a prompt asking you to insert the floppy containing
the ramdisk image. In a single floppy configuration the ramdisk image is on the same floppy as the kernel
that just finished loading/booting and so a prompt is not needed. In this case one can use
`prompt_ramdisk=0'. In a two floppy configuration, you will need the chance to switch disks, and thus
`prompt_ramdisk=1' can be used. Since this is the default value, it doesn't really need to be specified. (
(Historical note: Sneaky people used to use the `vga=ask' LILO option to temporarily pause the boot process
and allow a chance to switch from boot to root floppy.)

Please see the file linux/Documentation/ramdisk.txt for a complete description of the new boot
time arguments, and how to use them. A description of how this parameter can be set and stored in the kernel
image via `rdev' is also described.

The `ramdisk_size=' Argument

While it is true that the ramdisk grows dynamically as required, there is an upper bound on its size so that it
doesn't consume all available RAM and leave you in a mess. The default is 4096 (i.e. 4MB) which should be
large enough for most needs. You can override the default to a bigger or smaller size with this boot argument.

Please see the file linux/Documentation/ramdisk.txt for a complete description of the new boot
time arguments, and how to use them. A description of how this parameter can be set and stored in the kernel
image via `rdev' is also described.

The `ramdisk=' Argument (obsolete)

(NOTE: This argument is obsolete, and should not be used except on kernels v1.3.47 and older. The
commands that should be used for the ramdisk device are documented above.)

This specifies the size in kB of the RAM disk device. For example, if one wished to have a root filesystem on
a 1.44MB floppy loaded into the RAM disk device, they would use:

 ramdisk=1440

This is one of the few kernel boot arguments that has its default stored in the kernel image, and which can

 The Linux BootPrompt−HowTo

The `load_ramdisk=' Argument 10

thus be altered with the rdev utility.

The `noinitrd' (initial RAM disk) Argument

The v2.x and newer kernels have a feature where the root filesystem can be initially a RAM disk, and the
kernel executes /linuxrc on that RAM image. This feature is typically used to allow loading of modules
needed to mount the real root filesystem (e.g. load the SCSI driver modules stored in the RAM disk image,
and then mount the real root filesystem on a SCSI disk.)

The actual `noinitrd' argument determines what happens to the initrd data after the kernel has booted. When
specified, instead of converting it to a RAM disk, it is accessible via /dev/initrd, which can be read once
before the RAM is released back to the system. For full details on using the initial RAM disk, please consult
linux/Documentation/initrd.txt. In addition, the most recent versions of LILO and
LOADLIN should have additional useful information.

3.3 Boot Arguments Related to Memory Handling

The following arguments alter how Linux detects or handles the physical and virtual memory of your system.

The `mem=' Argument

This argument has two purposes: The original purpose was to specify the amount of installed memory (or a
value less than that if you wanted to limit the amount of memory available to linux). The second (and hardly
used) purpose is to specify mem=nopentium which tells the Linux kernel to not use the 4MB page table
performance feature.

The original BIOS call defined in the PC specification that returns the amount of installed memory was only
designed to be able to report up to 64MB. (Yes, another lack of foresight, just like the 1024 cylinder disks...
sigh.) Linux uses this BIOS call at boot to determine how much memory is installed. If you have more than
64MB of RAM installed, you can use this boot argument to tell Linux how much memory you have. Here is a
quote from Linus on the usage of the mem= parameter.

``The kernel will accept any `mem=xx' parameter you give it, and if it turns out that you lied to it, it will
crash horribly sooner or later. The parameter indicates the highest addressable RAM address, so
`mem=0x1000000' means you have 16MB of memory, for example. For a 96MB machine this would be
`mem=0x6000000'. If you tell Linux that it has more memory than it actually does have, bad things will
happen: maybe not at once, but surely eventually.''

Note that the argument does not have to be in hex, and the suffixes `k' and `M' (case insensitive) can be used
to specify kilobytes and Megabytes, respectively. (A `k' will cause a 10 bit shift on your value, and a `M' will
cause a 20 bit shift.) A typical example for a 128MB machine would be "mem=128m".

 The Linux BootPrompt−HowTo

The `noinitrd' (initial RAM disk) Argument 11

The `swap=' Argument

This allows the user to tune some of the virtual memory (VM) parameters that are related to swapping to
disk. It accepts the following eight parameters:

 MAX_PAGE_AGE
 PAGE_ADVANCE
 PAGE_DECLINE
 PAGE_INITIAL_AGE
 AGE_CLUSTER_FRACT
 AGE_CLUSTER_MIN
 PAGEOUT_WEIGHT
 BUFFEROUT_WEIGHT

Interested hackers are advised to have a read of linux/mm/swap.c and also make note of the goodies in
/proc/sys/vm. Kernels come with some useful documentation on this in the
linux/Documentation/vm/ directory.

The `buff=' Argument

Similar to the `swap=' argument, this allows the user to tune some of the parameters related to buffer memory
management. It accepts the following six parameters:

 MAX_BUFF_AGE
 BUFF_ADVANCE
 BUFF_DECLINE
 BUFF_INITIAL_AGE
 BUFFEROUT_WEIGHT
 BUFFERMEM_GRACE

Interested hackers are advised to have a read of linux/mm/swap.c and also make note of the goodies in
/proc/sys/vm. Kernels come with some useful documentation on this in the
linux/Documentation/vm/ directory.

3.4 Boot Arguments for NFS Root Filesystem

Linux supports systems such as diskless workstations via having their root filesystem as NFS (Network
FileSystem). These arguments are used to tell the diskless workstation which machine it is to get its system
from. Also note that the argument root=/dev/nfs is required. Detailed information on using an NFS root
fs is in the file linux/Documentation/nfsroot.txt. You should read that file, as the following is
only a quick summary taken directly from that file.

 The Linux BootPrompt−HowTo

The `swap=' Argument 12

The `nfsroot=' Argument

This argument tells the kernel which machine, what directory and what NFS options to use for the root
filesystem. The form of the argument is as follows:

 nfsroot=[<server−ip>:]<root−dir>[,<nfs−options>]

If the nfsroot parameter is not given on the command line, the default `/tftpboot/%s' will be used. The other
options are as follows:

<server−ip> −− Specifies the IP address of the NFS server. If this field is not given, the default address as
determined by the nfsaddrs variable (see below) is used. One use of this parameter is for example to allow
using different servers for RARP and NFS. Usually you can leave this blank.

<root−dir> −− Name of the directory on the server to mount as root. If there is a `%s' token in the string, the
token will be replaced by the ASCII−representation of the client's IP address.

<nfs−options> −− Standard NFS options. All options are separated by commas. If the options field is not
given, the following defaults will be used:

 port = as given by server portmap daemon
 rsize = 1024
 wsize = 1024
 timeo = 7
 retrans = 3
 acregmin = 3
 acregmax = 60
 acdirmin = 30
 acdirmax = 60
 flags = hard, nointr, noposix, cto, ac

The `nfsaddrs=' Argument

This boot argument sets up the various network interface addresses that are required to communicate over the
network. If this argument is not given, then the kernel tries to use RARP and/or BOOTP to figure out these
parameters. The form is as follows:

 nfsaddrs=<my−ip>:<serv−ip>:<gw−ip>:<netmask>:<name>:<dev>:<auto>

<my−ip> −− IP address of the client. If empty, the address will either be determined by RARP or BOOTP.
What protocol is used de− pends on what has been enabled during kernel configuration and on the <auto>
parameter. If this parameter is not empty, neither RARP nor BOOTP will be used.

<serv−ip> −− IP address of the NFS server. If RARP is used to determine the client address and this
parameter is NOT empty only replies from the specified server are accepted. To use different RARP and NFS
server, specify your RARP server here (or leave it blank), and specify your NFS server in the nfsroot
parameter (see above). If this entry is blank the address of the server is used which answered the RARP or
BOOTP request.

 The Linux BootPrompt−HowTo

The `nfsroot=' Argument 13

<gw−ip> −− IP address of a gateway if the server in on a different subnet. If this entry is empty no gateway is
used and the server is assumed to be on the local network, unless a value has been received by BOOTP.

<netmask> −− Netmask for local network interface. If this is empty, the netmask is derived from the client IP
address, unless a value has been received by BOOTP.

<name> −− Name of the client. If empty, the client IP address is used in ASCII−notation, or the value
received by BOOTP.

<dev> −− Name of network device to use. If this is empty, all devices are used for RARP requests, and the
first one found for BOOTP. For NFS the device is used on which either RARP or BOOTP replies have been
received. If you only have one device you can safely leave this blank.

<auto> −− Method to use for autoconfiguration. If this is either `rarp' or `bootp' the specified protocol is
being used. If the value is `both' or empty, both protocols are used so far as they have been enabled during
kernel configuration Using 'none' means no autoconfiguration. In this case you have to specify all necessary
values in the fields before.

The <auto> parameter can appear alone as the value to the nfsaddrs parameter (without all the `:' characters
before) in which case autoconfiguration is used. However, the `none' value is not available in that case.

3.5 Other Misc. Kernel Boot Arguments

These various boot arguments let the user tune certain internal kernel parameters.

The `debug' Argument

The kernel communicates important (and not−so important) messages to the operator via the
printk() function. If the message is considered important, the printk() function will put a copy on the
present console as well as handing it off to the klogd() facility so that it gets logged to disk. The reason for
printing important messages to the console as well as logging them to disk is because under unfortunate
circumstances (e.g. a disk failure) the message won't make it to disk and will be lost.

The threshold for what is and what isn't considered important is set by the console_loglevel variable.
The default is to log anything more important than DEBUG (level 7) to the console. (These levels are defined
in the include file kernel.h) Specifying debug as a boot argument will set the console loglevel to 10, so
that all kernel messages appear on the console.

The console loglevel can usually also be set at run time via an option to the klogd() program. Check the
man page for the version installed on your system to see how to do this.

The `init=' Argument

The kernel defaults to starting the `init' program at boot, which then takes care of setting up the computer for
users via launching getty programs, running `rc' scripts and the like. The kernel first looks for /sbin/init,
then /etc/init (depreciated), and as a last resort, it will try to use /bin/sh (possibly on /etc/rc). If

 The Linux BootPrompt−HowTo

3.5 Other Misc. Kernel Boot Arguments 14

for example, your init program got corrupted and thus stopped you from being able to boot, you could simply
use the boot prompt init=/bin/sh which would drop you directly into a shell at boot, allowing you to
replace the corrupted program.

The `kbd−reset' Argument

Normally on i386 based machines, the Linux kernel does not reset the keyboard controller at boot, since the
BIOS is supposed to do this. But as usual, not all machines do what they should. Supplying this option may
help if you are having problems with your keyboard behaviour. It simply forces a reset at initialization time.
(Some have argued that this should be the default behaviour anyways).

The `maxcpus=' Argument

The number given with this argument limits the maximum number of CPUs activated in SMP mode. Using a
value of 0 is equivalent to the nosmp option.

The `mca−pentium' Argument

The IBM model 95 Microchannel machines seem to lock up on the test that Linux usually does to detect the
type of math chip coupling. Since all Pentium chips have a built in math processor, this test (and the lock up
problem) can be avoided by using this boot option.

The `md=' Argument

If your root filesystem is on a Multiple Device then you can use this (assuming you compiled in boot support)
to tell the kernel the multiple device layout. The format (from the file linux/Documentation/md.txt)
is:

md=md_device_num,raid_level,chunk_size_factor,fault_level,dev0,dev1,...,devN

Where md_device_num is the number of the md device, i.e. 0 means md0, 1 means md1, etc. For
raid_level, use −1 for linear mode and 0 for striped mode. Other modes are currently unsupported. The
chunk_size_factor is for raid−0 and raid−1 only and sets the chunk size as PAGE_SIZE shifted left the
specified amount. The fault_level is only for raid−1 and sets the maximum fault number to the specified
number. (Currently unsupported due to lack of boot support for raid1.) The dev0−devN are a
commaseparated list of the devices that make up the individual md device: e.g.
/dev/hda1,/dev/hdc1,/dev/sda1

The `no387' Argument

Some i387 coprocessor chips have bugs that show up when used in 32 bit protected mode. For example, some
of the early ULSI−387 chips would cause solid lockups while performing floating point calculations,
apparently due to a bug in the FRSAV/FRRESTOR instructions. Using the `no387' boot argument causes

 The Linux BootPrompt−HowTo

The `kbd−reset' Argument 15

Linux to ignore the math coprocessor even if you have one. Of course you must then have your kernel
compiled with math emulation support! This may also be useful if you have one of those really old 386
machines that could use an 80287 FPU, as Linux can't use an 80287.

The `no−hlt' Argument

The i386 (and successors thereof) family of CPUs have a `hlt' instruction which tells the CPU that nothing is
going to happen until an external device (keyboard, modem, disk, etc.) calls upon the CPU to do a task. This
allows the CPU to enter a `low−power' mode where it sits like a zombie until an external device wakes it up
(usually via an interrupt). Some of the early i486DX−100 chips had a problem with the `hlt' instruction, in
that they couldn't reliably return to operating mode after this instruction was used. Using the `no−hlt'
instruction tells Linux to just run an infinite loop when there is nothing else to do, and to not halt your CPU
when there is no activity. This allows people with these broken chips to use Linux, although they would be
well advised to seek a replacement through a warranty where possible.

The `no−scroll' Argument

Using this argument at boot disables scrolling features that make it difficult to use Braille terminals.

The `noapic' Argument

Using this option tells a SMP kernel to not use some of the advanced features of the interrupt controller on
multi processor machines. See linux/Documentation/IO−APIC.txt for more information.

The `nosmp' Argument

Use of this option will tell a SMP kernel on a SMP machine to operate single processor. Typically only used
for debugging and determining if a particular problem is SMP related.

The `panic=' Argument

In the unlikely event of a kernel panic (i.e. an internal error that has been detected by the kernel, and which
the kernel decides is serious enough to moan loudly and then halt everything), the default behaviour is to just
sit there until someone comes along and notices the panic message on the screen and reboots the machine.
However if a machine is running unattended in an isolated location it may be desirable for it to automatically
reset itself so that the machine comes back on line. For example, using panic=30 at boot would cause the
kernel to try and reboot itself 30 seconds after the kernel panic happened. A value of zero gives the default
behaviour, which is to wait forever.

Note that this timeout value can also be read and set via the /proc/sys/kernel/panic sysctl interface.

 The Linux BootPrompt−HowTo

The `no−hlt' Argument 16

The `pci=' Argument

The `pirq=' Argument

Using this option tells a SMP kernel information on the PCI slot versus IRQ settings for SMP motherboards
which are unknown (or known to be blacklisted). See linux/Documentation/IO−APIC.txt for more
information.

The `profile=' Argument

Kernel developers can enable an option that allows them to profile how and where the kernel is spending its
CPU cycles in an effort to maximize efficiency and performance. This option lets you set the profile shift
count at boot. Typically it is set to two. You can also compile your kernel with profiling enabled by default.
In either case, you need a tool such as readprofile.c that can make use of the
/proc/profile output.

The `reboot=' Argument

This option controls the type of reboot that Linux will do when it resets the computer (typically via
/sbin/init handling a Control−Alt−Delete). The default as of v2.0 kernels is to do a `cold' reboot (i.e.
full reset, BIOS does memory check, etc.) instead of a `warm' reboot (i.e. no full reset, no memory check). It
was changed to be cold by default since that tends to work on cheap/broken hardware that fails to reboot
when a warm reboot is requested. To get the old behaviour (i.e. warm reboots) use reboot=w or in fact any
word that starts with w will work.

Why would you bother? Some disk controllers with cache memory on board can sense a warm reboot, and
flush any cached data to disk. Upon a cold boot, the card may be reset and the write−back data in your cache
card's memory is lost. Others have reported systems that take a long time to go through the memory check,
and/or SCSI BIOSes that take longer to initialize on a cold boot as a good reason to use warm reboots.

The `reserve=' Argument

This is used to protect I/O port regions from probes. The form of the command is:

reserve=iobase,extent[,iobase,extent]...

In some machines it may be necessary to prevent device drivers from checking for devices (auto−probing) in
a specific region. This may be because of poorly designed hardware that causes the boot to freeze (such as
some ethercards), hardware that is mistakenly identified, hardware whose state is changed by an earlier
probe, or merely hardware you don't want the kernel to initialize.

 The Linux BootPrompt−HowTo

The `pci=' Argument 17

The reserve boot−time argument addresses this problem by specifying an I/O port region that shouldn't be
probed. That region is reserved in the kernel's port registration table as if a device has already been found in
that region (with the name reserved). Note that this mechanism shouldn't be necessary on most machines.
Only when there is a problem or special case would it be necessary to use this.

The I/O ports in the specified region are protected against device probes that do a check_region() prior
to probing blindly into a region of I/O space. This was put in to be used when some driver was hanging on a
NE2000, or misidentifying some other device as its own. A correct device driver shouldn't probe a reserved
region, unless another boot argument explicitly specifies that it do so. This implies that reserve will most
often be used with some other boot argument. Hence if you specify a reserve region to protect a specific
device, you must generally specify an explicit probe for that device. Most drivers ignore the port registration
table if they are given an explicit address.

For example, the boot line

 reserve=0x300,32 blah=0x300

keeps all device drivers except the driver for `blah' from probing 0x300−0x31f.

As usual with boot−time specifiers there is an 11 parameter limit, thus you can only specify 5 reserved
regions per reserve keyword. Multiple reserve specifiers will work if you have an unusually
complicated request.

The `vga=' Argument

Note that this is not really a boot argument. It is an option that is interpreted by LILO and not by the kernel
like all the other boot arguments are. However its use has become so common that it deserves a mention here.
It can also be set via using rdev −v or equivalently vidmode on the vmlinuz file. This allows the setup
code to use the video BIOS to change the default display mode before actually booting the Linux kernel.
Typical modes are 80x50, 132x44 and so on. The best way to use this option is to start with vga=ask which
will prompt you with a list of various modes that you can use with your video adapter before booting the
kernel. Once you have the number from the above list that you want to use, you can later put it in place of the
`ask'. For more information, please see the file linux/Documentation/svga.txt that comes with all
recent kernel versions.

Note that newer kernels (v2.1 and up) have the setup code that changes the video mode as an option, listed as
Video mode selection support so you need to enable this option if you want to use this feature.

4.Boot Arguments to Control PCI Bus Behaviour (`pci=')

The `pci=' argument (not avail. in v2.0 kernels) can be used to change the behaviour of PCI bus device
probing and device behaviour. Firstly the file linux/drivers/pci/pci.c checks for architecture
independent pci= options. The remaining allowed arguments are handled in
linux/arch/???/kernel/bios32.c and are listed below for ???=i386.

 The Linux BootPrompt−HowTo

The `vga=' Argument 18

4.1 The `pci=bios' and `pci=nobios' Arguments

These are used to set/clear the flag indicating that the PCI probing is to take place via the PCI BIOS. The
default is to use the BIOS.

4.2 The `pci=conf1' and `pci=conf2' Arguments

If PCI direct mode is enabled, the use of these enables either configuration Type 1 or Type 2. These
implicitly clear the PCI BIOS probe flag (i.e. `pci=nobios') too.

4.3 The `pci=io=' Argument

If you get a message like PCI: Unassigned IO space for.../ then you may need to supply an I/O value
with this option. From the source:

``Several BIOS'es forget to assign addresses to I/O ranges. We try to fix it here, expecting there are free
addresses starting with 0x5800. Ugly, but until we come with better resource management, it's the only
simple solution.''

4.4 The `pci=nopeer' Argument

This disables the default peer bridge fixup, which according to the source does the following:

``In case there are peer host bridges, scan bus behind each of them. Although several sources claim that the
host bridges should have header type 1 and be assigned a bus number as for PCI2PCI bridges, the reality
doesn't pass this test and the bus number is usually set by BIOS to the first free value.''

4.5 The `pci=nosort' Argument

Using this argument instructs the kernel to not sort the PCI devices during the probing phase.

4.6 The `pci=off' Argument

Using this option disables all PCI bus probing. Any device drivers that make use of PCI functions to find and
initialize hardware will most likely fail to work.

 The Linux BootPrompt−HowTo

4.1 The `pci=bios' and `pci=nobios' Arguments 19

4.7 The `pci=reverse' Argument

This option will reverse the ordering of the PCI devices on that PCI bus.

5.Boot Arguments for Video Frame Buffer Drivers

The `video=' argument (not avail. in v2.0 kernels) is used when the frame buffer device abstraction layer is
built into the kernel. If that sounds complicated, well it isn't really too bad. It basically means that instead of
having a different video program (the X11R6 server) for each brand of video card (e.g. XF86_S3,
XF86_SVGA, ...), the kernel would have a built in driver available for each video card and export a single
interface for the video program so that only one X11R6 server (XF86_FBDev) would be required. This is
similar to how networking is now − the kernel has drivers available for each brand of network card and
exports a single network interface so that just one version of a network program (like Netscape) will work for
all systems, regardless of the underlying brand of network card.

The typical format of this argument is video=name:option1,option2,... where name is the name
of a generic option or of a frame buffer driver. The video= option is passed from
linux/init/main.c into linux/drivers/video/fbmem.c for further processing. Here it is
checked for some generic options before trying to match to a known driver name. Once a driver name match
is made, the comma separated option list is then passed into that particular driver for final processing. The list
of valid driver names can be found by reading down the fb_drivers array in the file fbmem.c mentioned
above.

Information on the options that each driver supports will eventually be found in
linux/Documentation/fb/ but currently (v2.2) only a few are described there. Unfortunately the
number of video drivers and the number of options for each one is content for another document itself and
hence too much to list here.

If there is no Documentation file for your card, you will have to get the option information directly from the
driver. Go to linux/drivers/video/ and look in the appropriate ???fb.c file (the ??? will be based
on the card name). In there, search for a function with _setup in its name and you should see what options
the driver tries to match, such as font or mode or...

5.1 The `video=map:...' Argument

This option is used to set/override the console to frame buffer device mapping. A comma separated list of
numbers sets the mapping, with the value of option N taken to be the frame buffer device number for console
N.

 The Linux BootPrompt−HowTo

4.7 The `pci=reverse' Argument 20

5.2 The `video=scrollback:...' Argument

A number after the colon will set the size of memory allocated for the scrollback buffer. (Use Shift and Page
Up or Page Down keys to scroll.) A suffix of `k' or `K' after the number will indicate that the number is to be
interpreted as kilobytes instead of bytes.

5.3 The `video=vc:...' Argument

A number, or a range of numbers (e.g. video=vc:2−5) will specify the first, or the first and last frame
buffer virtual console(s). The use of this option also has the effect of setting the frame buffer console to
not be the default console.

6.Boot Arguments for SCSI Peripherals.

This section contains the descriptions of the boot args that are used for passing information about the
installed SCSI host adapters, and SCSI devices.

6.1 Arguments for Mid−level Drivers

The mid level drivers handle things like disks, CD−ROMs and tapes without getting into host adapter
specifics.

Maximum Probed LUNs (`max_scsi_luns=')

Each SCSI device can have a number of `sub−devices' contained within itself. The most common example is
any of the SCSI CD−ROMs that handle more than one disk at a time. Each CD is addressed as a `Logical
Unit Number' (LUN) of that particular device. But most devices, such as hard disks, tape drives and such are
only one device, and will be assigned to LUN zero.

The problem arises with single LUN devices with bad firmware. Some poorly designed SCSI devices (old
and unfortunately new) can not handle being probed for LUNs not equal to zero. They will respond by
locking up, and possibly taking the whole SCSI bus down with them.

The kernel has a configuration option that allows you to set the maximum number of probed LUNs. The
default is to only probe LUN zero, to avoid the problem described above.

To specify the number of probed LUNs at boot, one enters `max_scsi_luns=n' as a boot arg, where n is a
number between one and eight. To avoid problems as described above, one would use n=1 to avoid upsetting
such broken devices

 The Linux BootPrompt−HowTo

5.2 The `video=scrollback:...' Argument 21

SCSI Logging (`scsi_logging=')

Supplying a non−zero value to this boot argument turns on logging of all SCSI events (error, scan, mlqueue,
mlcomplete, llqueue, llcomplete, hlqueue, hlcomplete). Note that better control of which events are logged
can be obtained via the /proc/scsi/scsi interface if you aren't interested in the events that take place at
boot before the /proc/ filesystem is accessible.

Parameters for the SCSI Tape Driver (`st=')

Some boot time configuration of the SCSI tape driver can be achieved by using the following:

 st=buf_size[,write_threshold[,max_bufs]]

The first two numbers are specified in units of kB. The default buf_size is 32kB, and the maximum size
that can be specified is a ridiculous 16384kB. The write_threshold is the value at which the buffer is
committed to tape, with a default value of 30kB. The maximum number of buffers varies with the number of
drives detected, and has a default of two. An example usage would be:

 st=32,30,2

Full details can be found in the README.st file that is in the scsi directory of the kernel source tree.

6.2 Arguments for SCSI Host Adapters

General notation for this section:

iobase −− the first I/O port that the SCSI host occupies. These are specified in hexidecimal notation, and
usually lie in the range from 0x200 to 0x3ff.

irq −− the hardware interrupt that the card is configured to use. Valid values will be dependent on the card
in question, but will usually be 5, 7, 9, 10, 11, 12, and 15. The other values are usually used for common
peripherals like IDE hard disks, floppies, serial ports, etc.

dma −− the DMA (Direct Memory Access) channel that the card uses. Typically only applies to
bus−mastering cards. PCI and VLB cards are native bus−masters, and do not require and ISA DMA channel.

scsi−id −− the ID that the host adapter uses to identify itself on the SCSI bus. Only some host adapters
allow you to change this value, as most have it permanently specified internally. The usual default value is
seven, but the Seagate and Future Domain TMC−950 boards use six.

parity −− whether the SCSI host adapter expects the attached devices to supply a parity value with all
information exchanges. Specifying a one indicates parity checking is enabled, and a zero disables parity
checking. Again, not all adapters will support selection of parity behaviour as a boot argument.

 The Linux BootPrompt−HowTo

SCSI Logging (`scsi_logging=') 22

Adaptec aha151x, aha152x, aic6260, aic6360, SB16−SCSI (`aha152x=')

The aha numbers refer to cards and the aic numbers refer to the actual SCSI chip on these type of cards,
including the Soundblaster−16 SCSI.

The probe code for these SCSI hosts looks for an installed BIOS, and if none is present, the probe will not
find your card. Then you will have to use a boot argument of the form:

 aha152x=iobase[,irq[,scsi−id[,reconnect[,parity]]]]

Note that if the driver was compiled with debugging enabled, a sixth value can be specified to set the debug
level.

All the parameters are as described at the top of this section, and the reconnect value will allow device
disconnect/reconnect if a non−zero value is used. An example usage is as follows:

 aha152x=0x340,11,7,1

Note that the parameters must be specified in order, meaning that if you want to specify a parity setting, then
you will have to specify an iobase, irq, scsi−id and reconnect value as well.

Adaptec aha154x (`aha1542=')

These are the aha154x series cards. The aha1542 series cards have an i82077 floppy controller onboard,
while the aha1540 series cards do not. These are busmastering cards, and have parameters to set the
``fairness'' that is used to share the bus with other devices. The boot argument looks like the following.

 aha1542=iobase[,buson,busoff[,dmaspeed]]

Valid iobase values are usually one of: 0x130, 0x134, 0x230, 0x234, 0x330, 0x334. Clone
cards may permit other values.

The buson, busoff values refer to the number of microseconds that the card dominates the ISA bus. The
defaults are 11us on, and 4us off, so that other cards (such as an ISA LANCE Ethernet card) have a chance to
get access to the ISA bus.

The dmaspeed value refers to the rate (in MB/s) at which the DMA (Direct Memory Access) transfers
proceed at. The default is 5MB/s. Newer revision cards allow you to select this value as part of the
soft−configuration, older cards use jumpers. You can use values up to 10MB/s assuming that your
motherboard is capable of handling it. Experiment with caution if using values over 5MB/s.

 The Linux BootPrompt−HowTo

Adaptec aha151x, aha152x, aic6260, aic6360, SB16−SCSI (`aha152x=') 23

Adaptec aha274x, aha284x, aic7xxx (`aic7xxx=')

These boards can accept an argument of the form:

 aic7xxx=extended,no_reset

The extended value, if non−zero, indicates that extended translation for large disks is enabled. The
no_reset value, if non−zero, tells the driver not to reset the SCSI bus when setting up the host adaptor at
boot.

AdvanSys SCSI Host Adaptors (`advansys=')

The AdvanSys driver can accept up to four i/o addresses that will be probed for an AdvanSys SCSI card.
Note that these values (if used) do not effect EISA or PCI probing in any way. They are only used for probing
ISA and VLB cards. In addition, if the driver has been compiled with debugging enabled, the level of
debugging output can be set by adding an 0xdeb[0−f] parameter. The 0−f allows setting the level of the
debugging messages to any of 16 levels of verbosity.

Always IN2000 Host Adaptor (`in2000=')

Unlike other SCSI host boot arguments, the IN2000 driver uses ASCII string prefixes for most of its integer
arguments. Here is a list of the supported arguments:

ioport:addr −− Where addr is IO address of a (usually ROM−less) card.

noreset −− No optional args. Prevents SCSI bus reset at boot time.

nosync:x −− x is a bitmask where the 1st 7 bits correspond with the 7 possible SCSI devices (bit 0 for device
#0, etc). Set a bit to PREVENT sync negotiation on that device. The driver default is sync DISABLED on all
devices.

period:ns −− ns is the minimum # of nanoseconds in a SCSI data transfer period. Default is 500; acceptable
values are 250 to 1000.

disconnect:x −− x = 0 to never allow disconnects, 2 to always allow them. x = 1 does 'adaptive' disconnects,
which is the default and generally the best choice.

debug:x If `DEBUGGING_ON' is defined, x is a bitmask that causes various types of debug output to printed
− see the DB_xxx defines in in2000.h

proc:x −− If `PROC_INTERFACE' is defined, x is a bitmask that determines how the /proc interface works
and what it does − see the PR_xxx defines in in2000.h

Some example usages are listed below:

 The Linux BootPrompt−HowTo

Adaptec aha274x, aha284x, aic7xxx (`aic7xxx=') 24

 in2000=ioport:0x220,noreset
 in2000=period:250,disconnect:2,nosync:0x03
 in2000=debug:0x1e
 in2000=proc:3

AMD AM53C974 based hardware (`AM53C974=')

Unlike other drivers, this one does not use boot parameters to communicate i/o, IRQ or DMA channels.
(Since the AM53C974 is a PCI device, there shouldn't be a need to do so.) Instead, the parameters are used to
communicate the transfer modes and rates that are to be used between the host and the target device. This is
best described with an example:

 AM53C974=7,2,8,15

This would be interpreted as follows: `For communication between the controller with SCSI−ID 7 and the
device with SCSI−ID 2, a transfer rate of 8MHz in synchronous mode with max. 15 bytes offset should be
negotiated.' More details can be found in the file linux/drivers/scsi/README.AM53C974

BusLogic SCSI Hosts with v1.2 kernels (`buslogic=')

In older kernels, the buslogic driver accepts only one parameter, that being the I/O base. It expects that to be
one of the following valid values: 0x130, 0x134, 0x230, 0x234, 0x330, 0x334.

BusLogic SCSI Hosts with v2.x kernels (`BusLogic=')

With v2.x kernels, the BusLogic driver accepts many parameters. (Note the case in the above; upper case B
and L!!!). There are simply too many to list here. A complete description is tucked away in the middle of the
driver linux/drivers/scsi/BusLogic.c and searching for the string BusLogic= will put you
right on it.

EATA SCSI Cards (`eata=')

As of late v2.0 kernels, the EATA drivers will accept a boot argument to specify the i/o base(s) to be probed.
It is of the form:

 eata=iobase1[,iobase2][,iobase3]...[,iobaseN]

The driver will probe the addresses in the order that they are listed.

 The Linux BootPrompt−HowTo

AMD AM53C974 based hardware (`AM53C974=') 25

Future Domain TMC−8xx, TMC−950 (`tmc8xx=')

The probe code for these SCSI hosts looks for an installed BIOS, and if none is present, the probe will not
find your card. Or, if the signature string of your BIOS is not recognized then it will also not be found. In
either case, you will then have to use a boot argument of the form:

 tmc8xx=mem_base,irq

The mem_base value is the value of the memory mapped I/O region that the card uses. This will usually be
one of the following values: 0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, 0xde000.

Future Domain TMC−16xx, TMC−3260, AHA−2920 (`fdomain=')

The driver detects these cards according to a list of known BIOS ROM signatures. For a full list of known
BIOS revisions, please see linux/drivers/scsi/fdomain.c as it has a lot of information at the top
of that file. If your BIOS is not known to the driver, you can use an override of the form:

 fdomain=iobase,irq[,scsi_id]

IOMEGA Parallel Port / ZIP drive (`ppa=')

This driver is for the IOMEGA Parallel Port SCSI adapter which is embedded into the IOMEGA ZIP drives.
It may also work with the original IOMEGA PPA3 device. The boot argument for this driver is of the form:

 ppa=iobase,speed_high,speed_low,nybble

with all but iobase being optionally specified values. If you wish to alter any of the three optional parameters,
you are advised to read linux/drivers/scsi/README.ppa for details of what they control.

NCR5380 based controllers (`ncr5380=')

Depending on your board, the 5380 can be either i/o mapped or memory mapped. (An address below 0x400
usually implies i/o mapping, but PCI and EISA hardware use i/o addresses above 0x3ff.) In either case, you
specify the address, the IRQ value and the DMA channel value. An example for an i/o mapped card would
be: ncr5380=0x350,5,3. If the card doesn't use interrupts, then an IRQ value of 255 (0xff) will disable
interrupts. An IRQ value of 254 means to autoprobe. More details can be found in the file
linux/drivers/scsi/README.g_NCR5380

 The Linux BootPrompt−HowTo

Future Domain TMC−8xx, TMC−950 (`tmc8xx=') 26

NCR53c400 based controllers (`ncr53c400=')

The generic 53c400 support is done with the same driver as the generic 5380 support mentioned above. The
boot argument is identical to the above with the exception that no DMA channel is used by the 53c400.

NCR53c406a based controllers (`ncr53c406a=')

This driver uses a boot argument of the form:

 ncr53c406a=PORTBASE,IRQ,FASTPIO

where the IRQ and FASTPIO parameters are optional. An interrupt value of zero disables the use of
interrupts. Using a value of one for the FASTPIO parameter enables the use of insl and outsl instructions
instead of the single−byte inb and outb instructions. The driver can also use DMA as a compile−time
option.

Pro Audio Spectrum (`pas16=')

The PAS16 uses a NCR5380 SCSI chip, and newer models support jumper−less configuration. The boot
argument is of the form:

 pas16=iobase,irq

The only difference is that you can specify an IRQ value of 255, which will tell the driver to work without
using interrupts, albeit at a performance loss. The iobase is usually 0x388.

Seagate ST−0x (`st0x=')

The probe code for these SCSI hosts looks for an installed BIOS, and if none is present, the probe will not
find your card. Or, if the signature string of your BIOS is not recognized then it will also not be found. In
either case, you will then have to use a boot argument of the form:

 st0x=mem_base,irq

The mem_base value is the value of the memory mapped I/O region that the card uses. This will usually be
one of the following values: 0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, 0xde000.

 The Linux BootPrompt−HowTo

NCR53c400 based controllers (`ncr53c400=') 27

Trantor T128 (`t128=')

These cards are also based on the NCR5380 chip, and accept the following options:

 t128=mem_base,irq

The valid values for mem_base are as follows: 0xcc000, 0xc8000, 0xdc000, 0xd8000.

Ultrastor SCSI cards (`u14−34f=')

Note that there appears to be two independent drivers for this card, namely CONFIG_SCSI_U14_34F that
uses u14−34f.c and CONFIG_SCSI_ULTRASTOR that uses ultrastor.c. It is the u14−34f one that
(as of late v2.0 kernels) accepts a boot argument of the form:

 u14−34f=iobase1[,iobase2][,iobase3]...[,iobaseN]

The driver will probe the addresses in the order that they are listed.

Western Digital WD7000 cards (`wd7000=')

The driver probe for the wd7000 looks for a known BIOS ROM string and knows about a few standard
configuration settings. If it doesn't come up with the correct values for your card, or you have an
unrecognized BIOS version, you can use a boot argument of the form:

 wd7000=irq,dma,iobase

6.3 SCSI Host Adapters that don't Accept Boot Args

At present, the following SCSI cards do not make use of any boot−time parameters. In some cases, you can
hard−wire values by directly editing the driver itself, if required.

 Adaptec aha1740 (EISA probing),
 NCR53c7xx,8xx (PCI, both drivers)
 Qlogic Fast (0x230, 0x330)
 Qlogic ISP (PCI)

 The Linux BootPrompt−HowTo

Trantor T128 (`t128=') 28

7.Hard Disks

This section lists all the boot args associated with standard MFM/RLL, ST−506, XT, and IDE disk drive
devices. Note that both the IDE and the generic ST−506 HD driver both accept the `hd=' option.

7.1 IDE Disk/CD−ROM Driver Parameters

The IDE driver accepts a number of parameters, which range from disk geometry specifications, to support
for advanced or broken controller chips. The following is a summary of all the possible boot arguments. For
full details, you really should consult the file ide.txt in the linux/Documentation directory, from
which this summary was extracted.

 "hdx=" is recognized for all "x" from "a" to "h", such as "hdc".
 "idex=" is recognized for all "x" from "0" to "3", such as "ide1".

 "hdx=noprobe" : drive may be present, but do not probe for it
 "hdx=none" : drive is NOT present, ignore cmos and do not probe
 "hdx=nowerr" : ignore the WRERR_STAT bit on this drive
 "hdx=cdrom" : drive is present, and is a cdrom drive
 "hdx=cyl,head,sect" : disk drive is present, with specified geometry
 "hdx=autotune" : driver will attempt to tune interface speed
 to the fastest PIO mode supported,
 if possible for this drive only.
 Not fully supported by all chipset types,
 and quite likely to cause trouble with
 older/odd IDE drives.

 "idex=noprobe" : do not attempt to access/use this interface
 "idex=base" : probe for an interface at the addr specified,
 where "base" is usually 0x1f0 or 0x170
 and "ctl" is assumed to be "base"+0x206
 "idex=base,ctl" : specify both base and ctl
 "idex=base,ctl,irq" : specify base, ctl, and irq number
 "idex=autotune" : driver will attempt to tune interface speed
 to the fastest PIO mode supported,
 for all drives on this interface.
 Not fully supported by all chipset types,
 and quite likely to cause trouble with
 older/odd IDE drives.
 "idex=noautotune" : driver will NOT attempt to tune interface speed
 This is the default for most chipsets,
 except the cmd640.
 "idex=serialize" : do not overlap operations on idex and ide(x^1)

The following are valid ONLY on ide0, and the defaults for the base,ctl ports must not be altered.

 "ide0=dtc2278" : probe/support DTC2278 interface
 "ide0=ht6560b" : probe/support HT6560B interface
 "ide0=cmd640_vlb" : *REQUIRED* for VLB cards with the CMD640 chip
 (not for PCI −− automatically detected)
 "ide0=qd6580" : probe/support qd6580 interface

 The Linux BootPrompt−HowTo

7.Hard Disks 29

 "ide0=ali14xx" : probe/support ali14xx chipsets (ALI M1439/M1445)
 "ide0=umc8672" : probe/support umc8672 chipsets

Everything else is rejected with a "BAD OPTION" message.

7.2 Standard ST−506 Disk Driver Options (`hd=')

The standard disk driver can accept geometry arguments for the disks similar to the IDE driver. Note
however that it only expects three values (C/H/S) −− any more or any less and it will silently ignore you.
Also, it only accepts `hd=' as an argument, i.e. `hda=', `hdb=' and so on are not valid here. The format is as
follows:

 hd=cyls,heads,sects

If there are two disks installed, the above is repeated with the geometry parameters of the second disk.

7.3 XT Disk Driver Options (`xd=')

If you are unfortunate enough to be using one of these old 8 bit cards that move data at a whopping 125kB/s
then here is the scoop. The probe code for these cards looks for an installed BIOS, and if none is present, the
probe will not find your card. Or, if the signature string of your BIOS is not recognized then it will also not
be found. In either case, you will then have to use a boot argument of the form:

 xd=type,irq,iobase,dma_chan

The type value specifies the particular manufacturer of the card, and are as follows: 0=generic; 1=DTC;
2,3,4=Western Digital, 5,6,7=Seagate; 8=OMTI. The only difference between multiple types from the same
manufacturer is the BIOS string used for detection, which is not used if the type is specified.

The xd_setup() function does no checking on the values, and assumes that you entered all four values.
Don't disappoint it. Here is an example usage for a WD1002 controller with the BIOS disabled/removed,
using the `default' XT controller parameters:

 xd=2,5,0x320,3

 The Linux BootPrompt−HowTo

7.2 Standard ST−506 Disk Driver Options (`hd=') 30

8.CD−ROMs (Non−SCSI/ATAPI/IDE)

This section lists all the possible boot args pertaining to CD−ROM devices. Note that this does not include
SCSI or IDE/ATAPI CD−ROMs. See the appropriate section(s) for those types of CD−ROMs.

Note that most of these CD−ROMs have documentation files that you should read, and they are all in one
handy place: linux/Documentation/cdrom.

8.1 The Aztech Interface (`aztcd=')

The syntax for this type of card is:

 aztcd=iobase[,magic_number]

If you set the magic_number to 0x79 then the driver will try and run anyway in the event of an unknown
firmware version. All other values are ignored.

8.2 The CDU−31A and CDU−33A Sony Interface (`cdu31a=')

This CD−ROM interface is found on some of the Pro Audio Spectrum sound cards, and other Sony supplied
interface cards. The syntax is as follows:

 cdu31a=iobase,[irq[,is_pas_card]]

Specifying an IRQ value of zero tells the driver that hardware interrupts aren't supported (as on some PAS
cards). If your card supports interrupts, you should use them as it cuts down on the CPU usage of the driver.

The `is_pas_card' should be entered as `PAS' if using a Pro Audio Spectrum card, and otherwise it should not
be specified at all.

8.3 The CDU−535 Sony Interface (`sonycd535=')

The syntax for this CD−ROM interface is:

 sonycd535=iobase[,irq]

A zero can be used for the I/O base as a `placeholder' if one wishes to specify an IRQ value.

 The Linux BootPrompt−HowTo

8.CD−ROMs (Non−SCSI/ATAPI/IDE) 31

8.4 The GoldStar Interface (`gscd=')

The syntax for this CD−ROM interface is:

 gscd=iobase

8.5 The ISP16 Interface (`isp16=')

The syntax for this CD−ROM interface is:

 isp16=[port[,irq[,dma]]][[,]drive_type]

Using a zero for irq or dma means that they are not used. The allowable values for drive_type are
noisp16, Sanyo, Panasonic, Sony, and Mitsumi. Using noisp16 disables the driver
altogether.

8.6 The Mitsumi Standard Interface (`mcd=')

The syntax for this CD−ROM interface is:

 mcd=iobase,[irq[,wait_value]]

The wait_value is used as an internal timeout value for people who are having problems with their drive,
and may or may not be implemented depending on a compile time DEFINE.

8.7 The Mitsumi XA/MultiSession Interface (`mcdx=')

At present this `experimental' driver has a setup function, but no parameters are implemented yet (as of
1.3.15). This is for the same hardware as above, but the driver has extended features.

8.8 The Optics Storage Interface (`optcd=')

The syntax for this type of card is:

 optcd=iobase

 The Linux BootPrompt−HowTo

8.4 The GoldStar Interface (`gscd=') 32

8.9 The Phillips CM206 Interface (`cm206=')

The syntax for this type of card is:

 cm206=[iobase][,irq]

The driver assumes numbers between 3 and 11 are IRQ values, and numbers between 0x300 and 0x370 are
I/O ports, so you can specify one, or both numbers, in any order. It also accepts `cm206=auto' to enable
autoprobing.

8.10 The Sanyo Interface (`sjcd=')

The syntax for this type of card is:

 sjcd=iobase[,irq[,dma_channel]]

8.11 The SoundBlaster Pro Interface (`sbpcd=')

The syntax for this type of card is:

 sbpcd=iobase,type

where type is one of the following (case sensitive) strings: `SoundBlaster', `LaserMate', or `SPEA'. The I/O
base is that of the CD−ROM interface, and not that of the sound portion of the card.

9.Serial and ISDN Drivers

9.1 The ICN ISDN driver (`icn=')

This ISDN driver expects a boot argument of the form:

 icn=iobase,membase,icn_id1,icn_id2

where iobase is the i/o port address of the card, membase is the shared memory base address of the card,
and the two icn_id are unique ASCII string identifiers.

 The Linux BootPrompt−HowTo

8.9 The Phillips CM206 Interface (`cm206=') 33

9.2 The PCBIT ISDN driver (`pcbit=')

This boot argument takes integer pair arguments of the form:

 pcbit=membase1,irq1[,membase2,irq2]

where membaseN is the shared memory base of the N'th card, and irqN is the interrupt setting of the N'th
card. The default is IRQ 5 and membase 0xD0000.

9.3 The Teles ISDN driver (`teles=')

This ISDN driver expects a boot argument of the form:

 teles=iobase,irq,membase,protocol,teles_id

where iobase is the i/o port address of the card, membase is the shared memory base address of the card,
irq is the interrupt channel the card uses, and teles_id is the unique ASCII string identifier.

9.4 The DigiBoard Driver (`digi=')

The DigiBoard driver accepts a string of six comma separated identifiers or integers. The 6 values in order
are:

 Enable/Disable this card
 Type of card: PC/Xi(0), PC/Xe(1), PC/Xeve(2), PC/Xem(3)
 Enable/Disable alternate pin arrangement
 Number of ports on this card
 I/O Port where card is configured (in HEX if using string identifiers)
 Base of memory window (in HEX if using string identifiers)

An example of a correct boot prompt argument (in both identifier and integer form) is:

 digi=E,PC/Xi,D,16,200,D0000
 digi=1,0,0,16,512,851968

Note that the driver defaults to an i/o of 0x200 and a shared memory base of 0xD0000 in the absence of a
digi= boot argument. There is no autoprobing performed. More details can be found in the file
linux/Documentation/digiboard.txt.

 The Linux BootPrompt−HowTo

9.2 The PCBIT ISDN driver (`pcbit=') 34

9.5 The RISCom/8 Multiport Serial Driver (`riscom8=')

Up to four boards can be supported by supplying four unique i/o port values for each individual board
installed. Other details can be found in the file linux/Documentation/riscom8.txt.

9.6 The Baycom Serial/Parallel Radio Modem (`baycom=')

The format of the boot argument for these devices is:

 baycom=modem,io,irq,options[,modem,io,irq,options]

Using modem=1 means you have the ser12 device, modem=2 means you have the par96 device. Using
options=0 means use hardware DCD, and options=1 means use software DCD. The io and irq are the i/o
port base and interrupt settings as usual. There is more details in the file README.baycom which is
currently in the /linux/drivers/char/ directory.

10.Other Hardware Devices

Any other devices that didn't fit into any of the above categories got lumped together here.

10.1 Ethernet Devices (`ether=')

Different drivers make use of different parameters, but they all at least share having an IRQ, an I/O port base
value, and a name. In its most generic form, it looks something like this:

 ether=irq,iobase[,param_1[,param_2,...param_8]]],name

The first non−numeric argument is taken as the name. The param_n values (if applicable) usually have
different meanings for each different card/driver. Typical param_n values are used to specify things like
shared memory address, interface selection, DMA channel and the like.

The most common use of this parameter is to force probing for a second ethercard, as the default is to only
probe for one. This can be accomplished with a simple:

 ether=0,0,eth1

Note that the values of zero for the IRQ and I/O base in the above example tell the driver(s) to autoprobe.

IMPORTANT NOTE TO MODULE USERS: The above will not force a probe for a second card if you are

 The Linux BootPrompt−HowTo

9.5 The RISCom/8 Multiport Serial Driver (`riscom8=') 35

using the driver(s) as run time loadable modules (instead of having them complied into the kernel). Most
Linux distributions use a bare bones kernel combined with a large selection of modular drivers. The
ether= only applies to drivers compiled directly into the kernel.

The Ethernet−HowTo has complete and extensive documentation on using multiple cards and on the
card/driver specific implementation of the param_n values where used. Interested readers should refer to the
section in that document on their particular card for more complete information. Ethernet−HowTo

10.2 The Floppy Disk Driver (`floppy=')

There are many floppy driver options, and they are all listed in README.fd in linux/drivers/block.
There are too many options in that file to list here. Instead, only those options that may be required to get a
Linux install to proceed on less than normal hardware are reprinted here.

floppy=0,daring Tells the floppy driver that your floppy controller should be used with caution
(disables all daring operations).

floppy=thinkpad Tells the floppy driver that you have a Thinkpad. Thinkpads use an inverted
convention for the disk change line.

floppy=nodma Tells the floppy driver not to use DMA for data transfers. This is needed on HP
Omnibooks, which don't have a workable DMA channel for the floppy driver. This option is also useful if
you frequently get "Unable to allocate DMA memory" messages. Use of `nodma' is not recommended if you
have a FDC without a FIFO (8272A or 82072). 82072A and later are OK). The FDC model is reported at
boot. You also need at least a 486 to use nodma.

floppy=nofifo Disables the FIFO entirely. This is needed if you get `Bus master arbitration error'
messages from your Ethernet card (or from other devices) while accessing the floppy.

floppy=broken_dcl Don't use the disk change line, but assume that the disk was changed whenever the
device node is reopened. Needed on some boxes where the disk change line is broken or unsupported. This
should be regarded as a stopgap measure, indeed it makes floppy operation less efficient due to unneeded
cache flushings, and slightly more unreliable. Please verify your cable connection and jumper settings if you
have any DCL problems. However, some older drives, and also some Laptops are known not to have a DCL.

floppy=debug Print (additional) debugging messages.

floppy=messages Print informational messages for some operations (disk change notifications, warnings
about over and underruns, and about autodetection).

10.3 The Sound Driver (`sound=')

The sound driver can also accept boot args to override the compiled in values. This is not recommended, as it
is rather complex and the documentation for it in the kernel mysteriously vanished (a hint). You are better off
to use sound as a module, or compile in your own values.

If you choose to use it regardless, then processing of the argument takes place in the file dev_table.c in

 The Linux BootPrompt−HowTo

10.2 The Floppy Disk Driver (`floppy=') 36

http://metalab.unc.edu/mdw/HOWTO/Ethernet-HOWTO.html

linux/drivers/sound. It accepts a boot arg of the form:

 sound=device1[,device2[,device3...[,device11]]]

where each deviceN value is of the following format 0xDTaaaId and the bytes are used as follows:

D − second DMA channel (zero if not applicable)

T − device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16, 7=SB16−MIDI,... The listing of
soundcard types up to 26 (don't forget to convert back to hex for command line use) are listed in the file
linux/include/linux/soundcard.h and 27 to 999 (newer models) can be found in the file
linux/drivers/sound/dev_table.h.

aaa − I/O address in hex.

I − interrupt line in hex (i.e 10=a, 11=b, ...)

d − First DMA channel.

As you can see it gets pretty messy, and you really are better off to use a modular driver or compile in your
own personal values as recommended. Using a boot arg of `sound=0' will disable the sound driver entirely.

10.4 The Bus Mouse Driver (`bmouse=')

The busmouse driver only accepts one parameter, that being the hardware IRQ value to be used.

10.5 The MS Bus Mouse Driver (`msmouse=')

The MS mouse driver only accepts one parameter, that being the hardware IRQ value to be used.

10.6 The Printer Driver (`lp=')

With this boot argument you can tell the printer driver what ports to use and what ports not to use. The latter
comes in handy if you don't want the printer driver to claim all available parallel ports, so that other drivers
(e.g. PLIP, PPA) can use them instead.

The format of the argument is multiple i/o, IRQ pairs. For example, lp=0x3bc,0,0x378,7 would use the
port at 0x3bc in IRQ−less (polling) mode, and use IRQ 7 for the port at 0x378. The port at 0x278 (if any)
would not be probed, since autoprobing only takes place in the absence of a lp= argument. To disable the
printer driver entirely, one can use lp=0.

 The Linux BootPrompt−HowTo

10.4 The Bus Mouse Driver (`bmouse=') 37

11.Copying, Translations, Closing, etc.

Hey, you made it to the end! (Phew...) Now just the legal stuff.

11.1 Copyright and Disclaimer

This document is Copyright (c) 1995−1999 by Paul Gortmaker. Copying and redistribution is allowed under
the conditions as outlined in the Linux Documentation Project Copyright, available from where you obtained
this document, OR as outlined in the GNU General Public License, version 2 (see linux/COPYING).

This document is not gospel. However, it is probably the most up to date info that you will be able to find.
Nobody is responsible for what happens to your hardware but yourself. If your stuff goes up in smoke, or
anything else bad happens, we take no responsibility. ie. THE AUTHOR IS NOT RESPONSIBLE FOR
ANY DAMAGES INCURRED DUE TO ACTIONS TAKEN BASED ON THE INFORMATION
INCLUDED IN THIS DOCUMENT.

A hint to people considering doing a translation. First, translate the SGML source (available via FTP from the
HowTo main site) so that you can then generate other output formats. Be sure to keep a copy of the original
English SGML source that you translated from! When an updated HowTo is released, get the new SGML
source for that version, and then a simple diff −u old.sgml new.sgml will show you exactly what
has changed so that you can easily incorporate those changes into your translated SMGL source without
having to re−read or re−translate everything.

If you are intending to incorporate this document into a published work, please make contact (via e−mail) so
that you can be supplied with the most up to date information available. In the past, out of date versions of
the Linux HowTo documents have been published, which caused the developers undue grief from being
plagued with questions that were already answered in the up to date versions.

11.2 Closing

If you have found any glaring typos, or outdated info in this document, please let me know. It is easy to
overlook stuff, as the kernel (and the number of drivers) is huge compared to what it was when I started this.

Thanks,

Paul Gortmaker, p_gortmaker@yahoo.com

 The Linux BootPrompt−HowTo

11.Copying, Translations, Closing, etc. 38

	Table of Contents
	The Linux BootPrompt-HowTo
	by Paul Gortmaker.
	1.Introduction
	2.Overview of Boot Prompt Arguments
	3.General Non-Device Specific Boot Args
	4.Boot Arguments to Control PCI Bus Behaviour (`pci=')
	5.Boot Arguments for Video Frame Buffer Drivers
	6.Boot Arguments for SCSI Peripherals.
	7.Hard Disks
	8.CD-ROMs (Non-SCSI/ATAPI/IDE)
	9.Serial and ISDN Drivers
	10.Other Hardware Devices
	11.Copying, Translations, Closing, etc.
	1.Introduction
	1.1 Disclaimer and Copyright
	1.2 Intended Audience and Applicability
	1.3 Related Documentation
	1.4 The Linux Newsgroups
	1.5 New Versions of this Document
	2.Overview of Boot Prompt Arguments
	2.1 LILO (LInux LOader)
	2.2 LoadLin
	2.3 The ``rdev'' utility
	2.4 How the Kernel Sorts the Arguments
	2.5 Setting Environment Variables.
	2.6 Passing Arguments to the `init' program
	3.General Non-Device Specific Boot Args
	3.1 Root Filesystem options
	The `root=' Argument
	The `ro' Argument
	The `rw' Argument

	3.2 Options Relating to RAM Disk Management
	The `ramdisk_start=' Argument
	The `load_ramdisk=' Argument
	The `prompt_ramdisk=' Argument
	The `ramdisk_size=' Argument
	The `ramdisk=' Argument (obsolete)
	The `noinitrd' (initial RAM disk) Argument

	3.3 Boot Arguments Related to Memory Handling
	The `mem=' Argument
	The `swap=' Argument
	The `buff=' Argument

	3.4 Boot Arguments for NFS Root Filesystem
	The `nfsroot=' Argument
	The `nfsaddrs=' Argument

	3.5 Other Misc. Kernel Boot Arguments
	The `debug' Argument
	The `init=' Argument
	The `kbd-reset' Argument
	The `maxcpus=' Argument
	The `mca-pentium' Argument
	The `md=' Argument
	The `no387' Argument
	The `no-hlt' Argument
	The `no-scroll' Argument
	The `noapic' Argument
	The `nosmp' Argument
	The `panic=' Argument
	The `pci=' Argument
	The `pirq=' Argument
	The `profile=' Argument
	The `reboot=' Argument
	The `reserve=' Argument
	The `vga=' Argument

	4.Boot Arguments to Control PCI Bus Behaviour (`pci=')
	4.1 The `pci=bios' and `pci=nobios' Arguments
	4.2 The `pci=conf1' and `pci=conf2' Arguments
	4.3 The `pci=io=' Argument
	4.4 The `pci=nopeer' Argument
	4.5 The `pci=nosort' Argument
	4.6 The `pci=off' Argument
	4.7 The `pci=reverse' Argument
	5.Boot Arguments for Video Frame Buffer Drivers
	5.1 The `video=map:...' Argument
	5.2 The `video=scrollback:...' Argument
	5.3 The `video=vc:...' Argument
	6.Boot Arguments for SCSI Peripherals.
	6.1 Arguments for Mid-level Drivers
	Maximum Probed LUNs (`max_scsi_luns=')
	SCSI Logging (`scsi_logging=')
	Parameters for the SCSI Tape Driver (`st=')

	6.2 Arguments for SCSI Host Adapters
	Adaptec aha151x, aha152x, aic6260, aic6360, SB16-SCSI (`aha152x=')
	Adaptec aha154x (`aha1542=')
	Adaptec aha274x, aha284x, aic7xxx (`aic7xxx=')
	AdvanSys SCSI Host Adaptors (`advansys=')
	Always IN2000 Host Adaptor (`in2000=')
	AMD AM53C974 based hardware (`AM53C974=')
	BusLogic SCSI Hosts with v1.2 kernels (`buslogic=')
	BusLogic SCSI Hosts with v2.x kernels (`BusLogic=')
	EATA SCSI Cards (`eata=')
	Future Domain TMC-8xx, TMC-950 (`tmc8xx=')
	Future Domain TMC-16xx, TMC-3260, AHA-2920 (`fdomain=')
	IOMEGA Parallel Port / ZIP drive (`ppa=')
	NCR5380 based controllers (`ncr5380=')
	NCR53c400 based controllers (`ncr53c400=')
	NCR53c406a based controllers (`ncr53c406a=')
	Pro Audio Spectrum (`pas16=')
	Seagate ST-0x (`st0x=')
	Trantor T128 (`t128=')
	Ultrastor SCSI cards (`u14-34f=')
	Western Digital WD7000 cards (`wd7000=')

	6.3 SCSI Host Adapters that don't Accept Boot Args
	7.Hard Disks
	7.1 IDE Disk/CD-ROM Driver Parameters
	7.2 Standard ST-506 Disk Driver Options (`hd=')
	7.3 XT Disk Driver Options (`xd=')
	8.CD-ROMs (Non-SCSI/ATAPI/IDE)
	8.1 The Aztech Interface (`aztcd=')
	8.2 The CDU-31A and CDU-33A Sony Interface (`cdu31a=')
	8.3 The CDU-535 Sony Interface (`sonycd535=')
	8.4 The GoldStar Interface (`gscd=')
	8.5 The ISP16 Interface (`isp16=')
	8.6 The Mitsumi Standard Interface (`mcd=')
	8.7 The Mitsumi XA/MultiSession Interface (`mcdx=')
	8.8 The Optics Storage Interface (`optcd=')
	8.9 The Phillips CM206 Interface (`cm206=')
	8.10 The Sanyo Interface (`sjcd=')
	8.11 The SoundBlaster Pro Interface (`sbpcd=')
	9.Serial and ISDN Drivers
	9.1 The ICN ISDN driver (`icn=')
	9.2 The PCBIT ISDN driver (`pcbit=')
	9.3 The Teles ISDN driver (`teles=')
	9.4 The DigiBoard Driver (`digi=')
	9.5 The RISCom/8 Multiport Serial Driver (`riscom8=')
	9.6 The Baycom Serial/Parallel Radio Modem (`baycom=')
	10.Other Hardware Devices
	10.1 Ethernet Devices (`ether=')
	10.2 The Floppy Disk Driver (`floppy=')
	10.3 The Sound Driver (`sound=')
	10.4 The Bus Mouse Driver (`bmouse=')
	10.5 The MS Bus Mouse Driver (`msmouse=')
	10.6 The Printer Driver (`lp=')
	11.Copying, Translations, Closing, etc.
	11.1 Copyright and Disclaimer
	11.2 Closing

